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Abstract New square-planar bis(macrocyclic)dicop-

per(II) complexes containing phenylene bridges between

16-membered pentaaza macrocyclic subunits have been

synthesized via in-situ one pot template condensation

reaction (IOPTCR) of aromatic nitrogen-nitrogen linker

(R = 1,4-phenylenediamine; benzidine; 4,4¢-diaminodiphenyl

methane; 4,4¢-diaminodiphenylether; 4,4¢-diaminodiphe-

nylsulfone), formaldehyde, bis(1,3-diaminopropane)cop-

per(II) perchlorate and 1,3-dibromopropane in a 1:4:

2:2 molar ratio results in the formation of new series of

binuclear copper(II) complexes; 1-phenyl- (1); 1,1¢-phenyl- (2);

1,1¢-diphenylmethan- (3); 1,1¢-diphenylether- (4); 1,1¢-
diphenylsulfone- (5) bis(1,3,7,11,15-pentaazacyclohexade-

cane)copper(II)), {[Cu([16]aneN5)]2R}(ClO4)4†. The for-

mation of the macrocyclic framework and the mode of

bonding of the complexes have been confirmed by data

obtained from elemental analyses, UV-visible, FT-IR,
1H-NMR, electronic spectral studies, conductivity and

magnetic susceptibility measurements. These bis(macro-

cyclic) complexes catalyzed efficiently the selective oxi-

dation of tetrahydrofuran into tetrahydrofuran-2-one and a

small amount of tetrahydrofuran-2-ol and 4-hydroxybu-

tyraldehyde using dil. H2O2 as the oxidant.

Keywords Copper (II) � Bis(macrocycle) � 16-membered �
Pentaaza � Oxidation

Introduction

The design and synthesis of complexes featuring two or

more metal centers held in close proximity has received

considerable attention because of the potential application

of such complexes as models for the active sites of metallo-

proteins [1], catalytic reagents that function through the

concerted action of multiple metal centers [2], and in the

study of magnetic exchange interactions between para-

magnetic metal centers [3]. Recently, there has also been

interest expressed in the use of polynuclear complexes as

selective receptors for a variety of substrate molecules,

including phosphates [4], barbiturates [5], oligonucleotides

[6], poly-imidazoles [7], phosphorylated peptides [8], and

histidine-bearing proteins [9].

Several articles have been published that cover the

various aspects of polyaza macrocyclic complexes [10].

Significant progress has been made in the synthesis of

cyclam-based binucleating ligands and structural and

physical studies of the corresponding homo- and hetero-

binuclear complexes. Aspects of bis-cyclam derivatives

and some themes involving supramolecular chemistry have

been reported so far [11]. Two macrocyclic ligands can be

linked through a variety of bridges involving donor atoms

(a) N,N-bridged bis(macrocycles), (b) C–C bonded

bi(macrocycles) and (c) 6,6-C-spirobi(macrocycles) link-

ing the framework of each tetraaza macrocycle, and many

of these bis(macrocycles) based on cyclam have been

studied [11]. The preparation of bis(macrocyclic) nitrogen

donor ligands with binucleating properties towards transi-

tion metals has recently attracted much attention, and a

variety of systems of this type have been reported [12].

Bis(macrocycles) appear to be better electrocatalysts than

are the corresponding mononuclear species [13]. The high

thermodynamic and kinetic inertness of transition metal
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complexes of polyaza macrocyclic ligands are significant

since they enhance a number of important industrial

applications [14–17].

In this paper we report the synthesis and characterization

of new bis(macrocyclic) binuclear copper(II) complexes of

1-phenyl-; 1,1¢-diphenyl-; 1,1¢-diphenylmethane-; 1,1¢-di-

phenylether-; and 1,1¢-diphenylsulfone-; bis(1,3,7,11,15-

pentaazacyclohexadecane)copper(II)) perchlorate, {[Cu([16]

aneN5)]2R}(ClO4)4 (1–5), (Scheme 1). These binuclear

complexes were prepared from the in-situ one pot template

condensation reaction (IOPTCR) of nitrogen–nitrogen lin-

ker (1,4-phenylenediamine; benzidine; 4,4¢-diaminodi

phenylmethane; 4,4¢-diaminodiphenylether; 4,4¢-diamin-

odiphenylsulfone), formaldehyde and bis(1,3-diaminopro-

pane)copper(II) and 1,3-dibromopropane in a 1:4:

2:2 molar ratio. These binuclear complexes were then used

as catalysts in tetrahydrofuran oxidation reaction by H2O2

Fig. 1.

Experimental

Perchlorate salts of transition metal complexes with or-

ganic ligands are often explosive and should be handled

with caution. All chemicals and solvents used in the syn-

theses were of reagent grade and were used without further

purification. For the spectroscopic measurements, H2O was

distilled and organic solvents were purified according to

the literature method [18]. FT-IR spectra were recorded on

Shimadzu Varian 4300 spectrophotometer in KBr pellets.

The electronic spectra of the complexes were taken on a

Shimadzu UV-visible scanning spectrometer (Model

2101 PC). The elemental analysis (carbon, hydrogen and

nitrogen) of the materials was obtained from Carlo ERBA

Model EA 1108 analyzer. The products were analyzed by

GC-MS, using a Philips Pu 4400 Chromatograph (1.5 m,

3% OV-17 Column), Varian 3400 Chromatograph (25 m,

DB-5 Column) coupled with a QP Finnegan MAT INCOF
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50, 70 eV. 1H-NMR spectra were determined for solution

in CDCl3 with tetramethylsilane as internal standard on a

Brucker AC 80. The copper contents of the samples were

measured by Atomic Absorption Spectrophotometer (AAS-

Perkin–Elmer 4100–1319) using a flame approach. Mag-

netic moments were calculated from magnetic suscepti-

bility data obtained using a Johnson Matthey MK–1

magnetic susceptibility balance and conductance mea-

surements with a Metrohm Herisau conductometer E 518.

Chlorine was determined gravimetrically.

Preparation of {[Cu([16]aneN5)]2R}(ClO4)4 (1–5)

A methanol solution (ca. 50 mL) of bridging diamine

(2.5 mmol) ‘‘1,4-phenylenediamine; benzidine; 4,4¢-diam-

inodiphenylmethane; 4,4¢-diaminodiphenylether; 4,4¢-
diaminodiphenylsulfone)’’ was placed in a two necked

flask and a methanol solution (50 mL) of formaldehyde

(10 mmol, 0.85 mL) was added. After 10 min a MeOH

solution (50 mL) of bis(1,3-diaminopropane)copper(II)

percholorate (5 mmol) was added and the resulting mixture

was stirred for ca. 4 h at reflux. Finally a methanol solution

(60 mL) of 1,3-dibromopropane (5 mmol, 1.01 g) were

added and the resulting mixture was stirred for ca. 8 h at

room temperature. The brown solid product was obtained,

filtered, washed with methanol and dried over fused CaCl2
in desiccators. The crystals were recrystallized from hot

methanol. Anal. Calcd for 1: Cu, 12.01; C, 31.79; H, 5.34;

N, 13.23. Found: Cu, 11.81; C, 31.57; H, 5.23; N, 13.37%;

Yield: ~40%; lB, 1.71 B.M; LM, 450 (W–1 cm2 mol–1);

t(N–H), 3230 cm–1; t(C–N), 1180 cm–1; d(N–H),

1650 cm–1; t(M–N), 400 cm–1; dMd, 17860 cm–1

(e = 80 M–1 cm–1, CH3NO2). Anal. Calcd for 2: Cu, 11.21;

C, 36.01; H, 5.33; N, 12.35. Found: Cu, 11.06; C, 35.81; H,

5.25; N, 12.44%; Yield: ~45%; lB, 1.70 B.M; LM, 458 (W–

1 cm2 mol–1); t(N–H), 3235 cm–1; t(C–N), 1190 cm–1;

d(N–H), 1655 cm–1; t(M–N), 405 cm–1; dMd, 18200 cm–1

(e = 74 M–1 cm–1, CH3NO2). Anal. Calcd for 3: Cu, 11.07;

C, 36.62; H, 5.44; N, 12.20. Found: Cu, 10.88; C, 36.50; H,

5.30; N, 12.32%; Yield: ~53%; lB, 1.71 B.M; LM, 450 (W–1

cm2 mol–1); t(N–H), 3225 cm–1; t(C–N), 1185 cm–1; d(N–

H), 1645 cm–1; t(M–N), 395 cm–1; dMd, 17950 cm–1

(e = 89 M–1 cm–1, CH3NO2). Anal. Calcd for 4: Cu, 11.05;

C, 35.51; H, 5.26; N, 12.17. Found: Cu, 10.88; C, 35.39; H,

5.13; N, 12.30%; Yield: ~55%; lB, 1.72 B.M; LM, 470 (W–1

cm2 mol–1); t(N–H), 3240 cm–1; t(C–N), 1200 cm–1; d(N–

H), 1660 cm–1; t(M–N), 406 cm–1; dMd, 18100 cm–1

(e = 90 M–1 cm–1, CH3NO2). Anal. Calcd for 5: Cu, 10.61;

C, 34.09; H, 5.05; N, 11.68. Found: Cu, 10.47; C, 33.89; H,

4.92; N, 11.75%; Yield: ~40%; lB, 1.73 B.M; LM, 450 (W–1

cm2 mol–1); t(N–H), 3250 cm–1; t(C–N), 1210 cm–1; d(N–

H), 1670 cm–1; t(M–N), 410 cm–1; dMd, 18,300 cm–1

(e = 90 M–1 cm–1, CH3NO2).

Preparation of {[Ni([16]aneN5)]2R}(ClO4)4

(R = Benzidine)

This bis(macrocyclic) dinuclear nickel(II) complexes was

prepared by a method similar to that for {[Cu([16]a-

neN5)]2R}(ClO4)4 except that Ni(ClO4)2 � 6H2O was used

instead of Cu(ClO4)2 � 6H2O. Anal. Calcd for C28H56

N10Cl4O16Ni2: Ni, 11.15; C, 31.94; H, 5.36; N, 13.30.

Found: Ni, 11.01; C, 31.80; H, 5.24; N, 13.39%; Yield:

~46%; lB, –0.08 B.M; LM, 455 (W–1 cm2 mol–1); t(N–H),

3225 cm–1; t(C–N), 1175 cm–1; d(N–H), 1670 cm–1.

Oxidation of tetrahydrofuran; general procedure

In a typical procedure, a mixture of {[Cu([16]a-

neN5)]2R}(ClO4)4 (1–5) as catalyst (0.35 mmol) and THF

(0.05 mol) was stirred for 30 min in a 50 mL round bottom

two-necked flask equipped with a condenser and dropping

funnel, under N2 atmosphere. Then 0.05 mol of the H2O2

(30% in H2O) was added via the dropping funnel. The

mixture was then heated under reflux for 8 h. The product

yields were determined by GC analysis using naphthalene

as internal standard. The solvent was removed under re-

duced pressure and the residue purified by chromatography

to give c-butyrolactone, which was further confirmed by
1H-NMR analysis [(dH (CDCl3) 2.26 (2H, q, J 6.6, CH2),

2.46 (2H, t, J 7.0, CH2) and 4.32 (2H, t, J 6.9 Hz, CH2)], a

small amount of the corresponding tetrahydrofuran-2-ol

and 4-hydroxybutyraldehyde.

Result and discussion

Novel 16-membered pentaazabis(macrocyclic) copper(II)

complexes; {[Cu([16]aneN5)]2R}(ClO4)4); have been syn-

thesized by in-situ one pot template condensation reaction
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(IOPTCR) between aromatic nitrogen–nitrogen linkers

(1,4-phenylenediamine; benzidine; 4,4¢-diaminodiphenyl

methane; 4,4¢-diaminodiphenylether; 4,4¢-diaminodiphe-

nylsulfone), formaldehyde, bis(1,3-diaminopropane)

copper(II) perchlorate and 1,3-dibromopropane in a 1:4:2:2

molar ratio (Scheme 1). All of the complexes are soluble in

polar solvents like DMSO, DMF, CH3CN and H2O. The

results of elemental analyses agree well with the proposed

bis(macrocyclic) copper(II) complexes. The molar con-

ductances’ of the complexes in methanol show that they are

electrolytes.

The prominent IR spectral bands are presented in

experimental section. In all of these complexes a single

sharp band in the region 3230–3250 cm–1 corresponds to

the coordinated t(N–H) vibration of a secondary amine

moiety. The IR spectra show no bands assignable to pri-

mary amine groups, expected from either 1,3-diaminopro-

pane or aromatic nitrogen–nitrogen linkers, or the carbonyl

group stretching vibrations corresponding to formaldehyde

indicating that the proposed bis(macrocyclic) bimetallic

complexes have been formed. The weak-intensity band

appearing at 1650–1670 cm–1 is assigned to d(N–H)

vibrations for secondary amine. All the complexes show a

strong band in the region 1180–1210 cm–1 assignable to

the t(C–N) group. All of the complexes show strong bands

in the regions 2855–2965 and 1420–1450 cm–1 which may

corresponds to t(C–H) and d(C–H) vibrations, respec-

tively. The spectra of perchlorate complexes gave addi-

tional bands at 900–1000 cm–1 consistent with the

perchlorate group.

For more investigation of structure, we synthesized the

diamagnetic bis(macrocyclic) dinickel(II) complex,

[(Ni([16]aneN5))2R](ClO4)4 (R = benzidine). The mag-

netic moments (–0.08 lB) of the nickel(II) complexes

measured in the solid state correspond to the square-planar

coordination geometry of the complexes. The diamagnetic

nature of the nickel(II) complex of [(Ni([16]aneN5))2R]

(ClO4)4 has allowed its characterization by NMR spec-

trometry. 1H-NMR spectra of the [(Ni([16]aneN5))2R]

(ClO4)4 complex exhibit very broad peaks in D2O,

CH3CN-d3, and Me2SO-d6 but sharp resolvable peaks in

CH3NO2-d3. This indicates that a considerable amount of

paramagnetic octahedral species of [(Ni([16]aneN5))2

R(Solvent)2]4+ exists in the donating solvents, where as the

Ni(II) complex of ‘‘([16]aneN5)2R)’’ exist primarily as

diamagnetic square-planar in CH3NO2-d3. The 1H-NMR

spectra of bis(macrocyclic)dinickel(II); {[Ni([16]

aneN5)]2R}(ClO4)4; complexe recorded in CH3NO2-d3

show a multiplet in the region 6.30–6.38 ppm ascribed to

–NH (8H) protons. A multiplet appearing in the region

3.30–3.40 ppm may be assigned to methylene protons of

the aminal moiety [N–CH2–N–(8H)]. Another multiplet

in the region 1.90–2.10 ppm may be assignable to

methylene protons [C–CH2–C (12H)] of the propane

chain moiety. The complexes also show a multiplet in

the ~7.37 ppm region, assigned to aromatic ring protons.

Furthermore, a multiplet observed for all the complexes

in the region 2.29–2.40 may correspond to the methylene

protons [C–CH2–N– (24H)] of the propylene diamine

moiety.

The electronic spectra of bis(macrocycle) binuclear

complexes are comparable to of square-planar copper(II)

complexes with similar macrocycles, indicating that the

tetraaza ligands of this study do not differ significantly

from the similar ligands with respect to the ligand field

strength [11, 19]. The brown complexes {[Cu([16]

aneN5)]2R}(ClO4)4, readily dissolve in polar solvents such

as H2O, CH3CN, CH3NO2, Me2SO2. The {[Cu([16]

aneN5)]2R}(ClO4)4, are extremely stable in the solid state

and in solution.

The trend observed in Table 1 can be explained by the

donor ability of ligand available in the complex catalysts.

Table 1 Substrate conversions and product selectivity in the oxidation of tetrahydrofuran with H2O2 in the presence of 16-membered pentaaza

bis(macrocyclic) binuclear copper(II) complexesa

O O
O OHO O

OH

H
+ +

H 2O 2

Aromatic  spacerN
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N
H
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H

H H

N

N
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N N
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N

H
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Catalyst Conversion (%) Tetrahydrofuran-2-one Tetrahydrofuran-2-ol 4-hydroxybutyraldehyde

1 53.4 51.3 39.6 9.1

2 88.5 60.6 29.1 10.3

3 60.4 54.5 37.4 8.1

4 79.6 88.4 6.5 5.1

5 92.7 93.2 6.8 –

Cu(ClO4)2 45.7 40.8 37.6 21.6

a Conditions: Catalyst = 0.35 mmol, THF = 0.05 mol, H2O2 = 0.05 mol, Time = 8 h, Reflux
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As Wang and co-workers have pointed out recently, the

key point in the conversion of THF to the products is the

reduction of L-Mn+ to L-M(n-1)+. This reduction to L-M(n-1)+

is facilitated with the ligands available around the metal

cation [20].

The effect of varying the catalyst concentration on the

oxidation of tetrahydrofuran with hydrogen peroxide and 5

as catalyst is shown in Figs. 2 and 3. With an increase in

the concentration of the catalyst a decrease in the yield of

tetrahydrofuran-2-ol was observed, while there was an

increase in the yield of tetrahydrofuran-2-one. The yield of

4-hydroxybutyraldehyd remained almost constant. The

decrease in percentage conversion at higher catalyst con-

centration is attributed to the formation of l-oxo dimers,

which inhibit the catalytic cycle.

Effect of time on the reaction results were studied by

running the tetrahydrofuran reaction in 2, 4, 6, 8, 10, 12

and 14 h. As we can see in Table 2 increasing time from 2

to 8 h has increased the conversion percentages from 50.7

to 92.7. No conversion enhancement was observed beyond

8 h.

The effect of various solvents (Tables 3, 4, 5) on the

oxidation of tetrahydrofuran with 1–5 as catalysts was also

studied. In all the oxidation reactions, tetrahydrofuran-2-

one was formed as the major product. When the reaction

was carried out in a coordinating solvent like MeCN the

conversion decreased. This might be attributed to the donor

number of MeCN (14.1) and therefore, its higher ability to

occupy the vacant spaces around the metal center and

prevent the approach of oxidant molecules. The efficiency

of the catalysts for oxidation of tetrahydrofuran in different

solvents decreases in the order: THF > MeNO2 > MeOH >

MeCN (Fig. 4).

Conclusions

Square-planar copper(II) complexes of [1-phenyl- (1); 1,1¢-
phenyl-(2); 1,1¢-diphenylmethane-(3); 1,1¢-diphenylether-(4);

1,1¢-diphenylsulfone-(5)] bis(1,3,7,11,15-pentaazacyclo-

hexadecane)copper(II)), {[Cu([16]aneN5)]2R}(ClO4)4 have

been prepared by the one-pot template reactions of nitro-

gen–nitrogen linker (1,4-phenylenediamine; benzidine;

4,4¢-diaminodiphenylmethane; 4,4¢-diaminodiphenylether;

4,4¢-diaminodiphenylsulfone), formaldehyde, bis(1,3-dia-

minopropane)copper(II) perchlorate and 1,3-dibromopropane
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0.05 mol, Time = 8 h, Reflux)
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Fig. 3 Effect of catalyst concentration on substrate conversions and

product selectivity in the oxidation of tetrahydrofuran with H2O2 in

the presence of 5 as catalyst (Conditions: THF = 0.05 mol, H2O2 =

0.05 mol, Time = 8 h, Reflux)

Table 2 Effect of time on substrate conversions and product selectivity in the oxidation of tetrahydrofuran with H2O2 in the presence of 5 as

catalysta

Time (h) Conversion (%) Tetrahydrofuran-2-one Tetrahydrofuran-2-ol 4-hydroxybutyraldehyde

2 50.7 41.0 59.0 –

4 71.4 53.1 46.9 –

6 86.5 74.6 25.4 –

8 92.7 93.2 6.8 –

10 89.3 91.8 5.7 2.5

12 84.5 91.1 5.1 3.8

14 80.7 89.9 4.7 5.4

a Conditions: THF = 0.05 mol, H2O2 = 0.05 mol, Catalyst = 0.35 mmol, Reflux
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in a 1:4:2:2 molar ratio. The spectra of 1–5 show that the

four nitrogen atoms are coordinated to the copper(II) ion.

These complexes are found to be effective catalysts in the

selective oxidation of tetrahydrofuran. The following

points may be noted:

• The major oxidation product of tetrahydrofuran in this

study is tetrahydrofuran-2-one.

• Tetrahydrofuran alone, in the absence of bis(macrocy-

cle) was not catalytically active.

• The activity of tetrahydrofuran oxidation decreases in

the series: 5 > 2 > 4 > 3 > 1.

• The reactions show appreciable solvent effects and

activity of oxidation decreases:

THF > MeNO2 > MeOH > MeCN.

Acknowledgment Authors are grateful to Council of University of

Kashan for providing financial support to undertake this work.

References

1. Parkin, G.: Synthetic analogues relevant to the structure and

function of zinc enzymes. Chem. Rev. 104, 699–768 (2004)

2. Young, M.J., Chin, J.: Dinuclear copper(II) complex that

hydrolyzes RNA. J. Am. Chem. Soc. 117, 10577–10578 (1995);

Table 3 Substrate conversions and product selectivity in the oxidation of tetrahydrofuran with H2O2 in the presence of 16-membered pentaaza

bis(macrocyclic) binuclear copper(II) complexes in methanola

Catalyst Conversion (%) Tetrahydrofuran-2-one Tetrahydrofuran-2-ol 4-hydroxybutyraldehyde

1 37.5 46.1 42.6 11.3

2 70.4 53.8 33.7 12.5

3 43.7 49.1 40.1 10.8

4 63.8 77.2 13.2 9.6

5 75.9 78.1 14.5 7.4

a Conditions: THF = 0.05 mol, H2O2 = 0.05 mol, Catalyst = 0.35 mmol, Time = 8 h, Reflux

Table 4 Substrate conversions and product selectivity in the oxidation of tetrahydrofuran with H2O2 in the presence of 16-membered pentaaza

bis(macrocyclic) binuclear copper(II) complexes in nitromethanea

Catalyst Conversion (%) Tetrahydrofuran-2-one Tetrahydrofuran-2-ol 4-hydroxybutyraldehyde

1 52.6 49.1 40.2 10.7

2 86.1 58.3 31.9 9.8

3 58.4 53.4 39.1 7.5

4 76.0 82.7 12.6 4.7

5 88.3 84.5 13.1 2.4

a Conditions: THF = 0.05 mol, H2O2 = 0.05 mol, Catalyst = 0.35 mmol, Time = 8 h, Reflux

Table 5 Substrate conversions and product selectivity in the oxidation of tetrahydrofuran with H2O2 in the presence of 16-membered pentaaza

bis(macrocyclic) binuclear copper(II) complexes in acetonitrilea

Catalyst Conversion (%) Tetrahydrofuran-2-one Tetrahydrofuran-2-ol 4-hydroxybutyraldehyde

1 35.2 43.6 43.7 12.7

2 66.7 52.1 34.5 13.4

3 40.4 47.2 41.2 11.6

4 60.1 74.1 14.7 11.2

5 72.6 75.1 15.3 9.6

a Conditions: THF = 0.05 mol, H2O2 = 0.05 mol, Catalyst = 0.35 mmol, Time = 8 h, Reflux

0

20

40

60

80

100

C
on

ve
rs

io
n 

(%
)

THF

nitromethane

methanol acetonitrile

Fig. 4 Oxidation of tetrahydrofuran with hydrogene peroxide in

various solvent with 16-membered pentaaza bis(macrocycle) binu-

clear copper(II) complexes in the presence of 5

228 J Incl Phenom Macrocycl Chem (2007) 59:223–230

123



Iranzo, O., Kovalevsky, A.Y., Morrow, J.R., Richard, J.P.:

Physical and kinetic analysis of the cooperative role of metal ions

in catalysis of phosphodiester cleavage by a dinuclear Zn(II)

complex. J. Am. Chem. Soc. 125, 1988–1993 (2003)

3. Graham, B., Hearn, M.T.W., Junk, P.C., Kepert, C.M., Mabbs,

F.E., Moubaraki, B., Murray, K.S., Spiccia, L.: Syntheses, crystal

structures, magnetic properties, and EPR spectra of tetranuclear

copper(II) complexes featuring pairs of ‘‘roof-shaped’’ Cu2X2

dimers with hydroxide, methoxide, and azide bridges. Inorg.

Chem. 40, 1536–1543 (2001); Haasnoot, J.G., Ferrer, S., Lloret,

F., Bertomeu, I., Alzuet, G., Borras, J., Garcia-Granda, S., Liu-

Gonzalez, M.: Cyclic trinuclear and chain of cyclic trinuclear

copper(II) complexes containing a pyramidal Cu3O(H) core.

Crystal structures and magnetic properties of [Cu3(l3-OH)(aaa-

t)3(H2O)3](NO3)2�H2O [aaat = 3-Acetylamino-5-amino-1,2,4-

triazolate] and {[Cu3(l3-OH)(aat)3( l3-SO4)]�6H2O}n [aat = 3-

Acetylamino-1,2,4-triazolate]: new cases of spin-frustrated sys-

tems. Inorg. Chem. 41, 5821–5830 (2002); Gehring, G., Fle-

ischhauer, P., Paulus, H., Haase, W.: Ferromagnetic exchange

coupling and magneto-structural correlations in mixed-bridged

trinuclear copper(II) complexes. Magnetic data and theoretical

investigations and crystal structures of two angled CuII3 com-

plexes. Inorg. Chem. 32, 54–60 (1993)

4. Kimura, E., Aoki, S., Koike, T., Shiro, M.: A tris(ZnII-1,4,7,10-

tetraazacyclododecane) complex as a new receptor for phosphate

dianions in aqueous solution. J. Am. Chem. Soc. 119, 3068–3076

(1997)

5. Koike, T., Takashige, M., Kimura, E., Fujioka, H., Shiro, H.:

Bis(Zn-cyclen) complex as a novel receptor of barbiturates in

aqueous solution. Chem. Eur. J. 2, 617–623 (1996)

6. Kimura, E., Kikuchi, M., Kitamura, H., Koike, T.: Selective and

efficient recognition of thymidylylthymidine (TpT) by bis(ZnII-

cyclen) and thymidylylthymidylylthymidine (TpTpT) by tris(Z-

nII-cyclen) at neutral pH in aqueous solution. Chem. Eur. J. 5,

3113–3123 (1999)

7. Felluga, F., Tecilla, P., Hillier, L., Hunter, C.A., Licini, G.,

Scrimin, P.: Metal-driven self assembly of C3 symmetry molec-

ular cages. Chem. Commun.12, 1087–1088 (2000)

8. Ojida, A., Inoue, M.-a., Mito-oka, Y., Hamachi, I.: Cross-linking

strategy for molecular recognition and fluorescent sensing of a

multi-phosphorylated peptide in aqueous solution. J. Am. Chem.

Soc. 125, 10184–10185 (2003)

9. Gros, C.P., Brisach, F., Meristoudi, A., Espinosa, E., Guilard, R.,

Harvey, P.D.: Modulation of the singlet–singlet through-space

energy transfer rates in cofacial bisporphyrin and porphyrin-

corrole dyads. Inorg. Chem. 46, 125–135 (2007)

10. Melson, G.A.: Coordination Chemistry of Macrocyclic Com-

pounds, Plenum Press, New York (1979)

11. Donnelly, M.A., Zimmer, M.: Structural analysis of all the nickel

14-membered tetraaza macrocycles in the Cambridge structural

database. Inorg. Chem. 38, 1650–1658 (1999)

12. Lawrance, G.A., O’Leary, M.A.: Macrocyclic tetraamines from

reaction of the (1,10-diamino-4,7-diazadecane)copper(II) cation

with formaldehyde and the carbon acids nitroethane and diethyl-

malonate: variability in reactivity. Polyhedron. 6, 1291–1294

(1987); Suh, M.P, Kim, D., Choy, J.H.: Template synthesis and

characterization of a nickel(II) complex with tris(((aminoeth-

yl)amino)methyl)amine: (semisepulchrate)nickel(2+). Inorg.

Chem. 24, 3712–3714 (1985); Suh, M.P., Shin, W., Kim, H., Koo,

C.H.: Nickel(II) complexes of novel ligands containing a tetraaz-

abicyclononane ring: synthesis and structures of [3,7-bis(2-am-

inoethyl)-1,3,5,7-tetraazabicyclo[3.3.1]nonane]nickel(II) per-

chlorate and (8-methyl-1,3,6,8,10,13,15-heptaazatricyclo[13.1.1.

113,15]octadecane)nickel(II) perchlorate. Inorg. Chem. 26, 1846–

1852 (1987); Sadasivan, N., Endicott, J.F.: The synthesis and

chemistry of a novel macrocyclic Schiff base dihydrogen

perchlorate by condensation of Fe(en)3
2+ with acetone. J. Am.

Chem. Soc. 88, 5468–5472 (1966); Fabbrizzi, L., Forlini, F., Per-

otti, A., Seghi, B.: Stepwise incorporation of copper(II) into a

double-ring octaaza macrocycle and consecutive oxidation to the

trivalent state. Inorg. Chem. 23, 807–813 (1984); Murase, I., Ueno,

S., Kida, S.: Bis(isocyclam)dicopper(II) complexes with a linear

methylene chain bridge. Inorg. Chim. Acta. 111, 57–60 (1986);

Barefield, E.K., Foster, K.A., Freeman, G.M., Hodges, K.D.:

Synthesis and characterization of tetra-N-alkylated cyclam ligands

that contain a functionalized nitrogen substituent. Inorg. Chem. 25,

4663–4668 (1986); Karl Wieghardt, K., Tolksdorf, I., Herrmann,

W.: Coordination chemistry of the bimacrocyclic, potentially

binucleating ligand 1,2-bis(1,4,7-triaza-1-cyclononyl)ethane

(dtne). Electrochemistry of its first transition series metal(II,III)

complexes. Characterization of the new hemerythrin model com-

plex [Fe2(dtne)(.mu–O)(.mu–CH3CO2)2]Br2.H2O. Inorg. Chem.

24, 1230–1235 (1985); Ciampolini, M., Fabbrizzi, L., Perotti, A.,

Poggi, A., Seghi, B., Zanobini, F.: Dinickel and dicopper com-

plexes with N,N-linked bis(cyclam) ligands. An ideal system for

the investigation of electrostatic effects on the redox behavior of

pairs of metal ions. Inorg. Chem. 26, 3527–3533 (1987); Salavati-

Niasari, M., Amiri, A.: Binuclear copper(II) complexes of new

bis(macrocyclic) 16-membered pentaaza subunits are linked to-

gether by bridging nitrogen of amine: synthesis, characterization

and catalytic activity. J. Mol. Catal. A: Chem. 235, 114–121

(2005); Salavati-Niasari, M., Amiri, A.: Synthesis and character-

ization of bis(macrocyclic) nickel(II) complexes containing aro-

matic nitrogen–nitrogen linkers produced by template

condensation. Trans. Met. Chem. 31, 157–162 (2006); Salavati-

Niasari, M., Bazarganipour, M.: Bis(macrocyclic) copper(II)

complexes containing aromatic nitrogen–nitrogen linkers pro-

duced by in situ one pot template condensation reaction (IOPTCR):

synthesis, characterization and catalytic oxidation of tetrahydro-

furan. Inorg. Chem. Commum. 9, 332–336 (2006); Salavati-Nia-

sari, M., Bazarganipour, M., Ganjali, M.R., Norouzi, P.:

Bis(macrocyclic)dinickel(II) complexes containing phenylene

bridges between 13-membered triaza dioxa macrocyclic ligands:

in-situ one pot template synthesis, characterization and catalytic

oxidation of cyclohexene. Trans. Met. Chem. 32, 9–15 (2007)

13. Arion, V.B., Gerbeleu, N.V., Levitsky, V.G., Simonov, Y.A.,

Dvorkin, A.A., Bourosh, P.N.: Template synthesis, structure and

properties of a bis(macrocyclic) dinickel(II) complex based on a

14-membered hexaaza unit. Chem. Soc., Dalton Trans. 1913–

1916 (1994); Kang, S.G., Song, J., Jeong, J.H.: Synthesis and

characterization of new unsaturated macrobicyclic and bis(mac-

rocyclic) copper(II) complexes containing N–CH2–N linkages.

Inorg. Chim. Acta. 357, 605–609 (2004); Tetranuclear nickel(II)

complex derived from bis(macrocycle), l-terephthalato-bis{a-

qua-7,7¢-o-xylylenebis{3,7,11,17-tetraazabicyclo[11.3.1]-hepta-

deca-1(17), 13,15-trienedinickel(II)}} iodide, {[Ni2(OH2)(L)]2

(l-terephthalato)}I6. Inorg. Chem. Commun. 6, 935–938 (2003);

Tsymbal, L.V., Lampeka, Y.D., Taraszewska, J.: Synthesis and

spectral properties of new bis(macrocyclic) nickel complexes and

the influence of their structure and medium on electrochemical

behaviour. Polyhedron 20, 1837–1844 (2001)

14. Comba, P., Kerscher, M., Lampeka, Y.D., Lotzbeyer, L., Pritz-

kow, H., Tsymbal, L.V.: Structural properties of cyclopentanone-

bridged bis-macrocyclic ligand dicopper(II) complexes in the

solid and in solution: a successful test of the MM-EPR method.

Inorg. Chem. 42, 3387–3389 (2003)

15. Champness, N.R., Frampton, C.S., Reid, G., Tocher, D.A.:

Mixed phosphathia macrocyclic chemistry: synthesis and char-

acterisation of [M(Ph2[14]ane P2S2)]2+(M = Pd or Pt) and

[RhCl2(Ph2[14]ane P2S2)]+(Ph2[14]ane P2S2= 8, 12-diphenyl-1,

5-dithia-8, 12-diphosphacyclotetradecane). Chem. Soc., Dalton

Trans. 3031–3037 (1994)

J Incl Phenom Macrocycl Chem (2007) 59:223–230 229

123



16. McKenzie, C.J., Robson, R.J.: High turnover catalysis at bime-

tallic sites of the hydration of nitriles to carboxamides co-catal-

ysed by acid. Highly specific hydration of acrylonitrile to

acrylamide. Chem. Soc., Chem. Commun.112–114 (1988)

17. Salavati-Niasari, M., Davar, F.: Synthesis, characterization and

catalytic activity of copper(II) complexes of 14-membered mac-

rocyclic ligand; 3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacy-

clotetradecanel/zeolite encapsulated nanocomposite materials.

Inorg. Chem. Commun. 9, 304–309 (2006)

18. Fransto, J.J.R., da Silva, Williams, R.J.P.: The Biological

Chemistry of the Elements. Clarendon Press, Oxford(1991)

19. Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of

Laboratory Chemicals, 2nd ed.: Pergamon: Headington Hill Hall,

Oxford, London, England (1980)

20. Salavati-Niasari, M., Amiri, A.: Template syntheses involving

the carbon acid nitroethane. Synthesis and characterization of

copper(II) complexes of a 16-membered tetraaza macrocycle.

Trans. Met. Chem. 30, 720–725 (2005)

21. Salavati-Niasari, M., Rezai-Adaryani, M., Heydarzadeh, S.:

Copper(II) complexes with 18-membered decaaza macrocy-

cles:synthesis, characterization and catalytic activity. Trans. Met.

Chem. 30, 445–450 (2005); Salavati-Niasari M., Davar, F.: In situ

one-pot template synthesis (IOPTS) and characterization of

copper(II) complexes of 14-membered hexaaza macrocyclic li-

gand ‘‘3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetrade-

cane’’. Inorg. Chem. Commun. 9, 175–179 (2006); Lehtonen, A.,

Kessler V.G.: Synthesis and structure of dioxomolybdenum(VI)

complex of amine triphenolato ligand. Inorg. Chem. Commun. 7,

691–693(2004); Salavati-Niasari, M.: Macrocyclic dioxadiaza

from the reaction of the (1,8-diamino-3,6-dioxaoctane)copper(II)

cation with formaldehyde and the carbon acids nitroethane or

diethylmalonate. Polyhedron. 24, 1405–1409 (2005); Salavati-

Niasari, M.: Zeolite-encapsulation copper(II) complexes with 14-

membered hexaaza macrocycles: synthesis, characterization and

catalytic activity. J. Mol. Catal. A: Chem. 217, 87–92 (2004);

Salavati-Niasari, M.: Nanodimensional Microreactor-encapsula-

tion of 18-membered decaaza macrocycle copper(II) complexes.

Chem. Lett. 34, 244–245 (2005); Salavati-Niasari, M.: Synthesis

and characterization of host (nanodimensional pores of zeolite-

Y)–guest [Unsaturated 16-membered octaaza–macrocycle

manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II)

complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445

(2005); Salavati-Niasari, M.: Host (nanocavity of zeolite-Y)–

guest (tetraaza[14]annulene copper(II) complexes) nanocom-

posite materials: synthesis, characterization and liquid phase

oxidation of benzyl alcohol. J. Mol. Catal. A: Chem. 245, 192–

199 (2006); Salavati-Niasari, M.: Oxidation of tetrahydrofuran

with hydrogen peroxide in the presence of host (zeolite Y)/guest

(1,9-dialkyl-1,3,7,9,11,15-hexaazacyclohexadecane copper(II)

complexes, [Cu(R2[16]aneN6)]2+) nanocomposite materials. In-

org. Chem. Commun. 9, 628–633 (2006); Wang, R.M., Hao, C.J.,

Wang, Y.P., Shu-Ben Li: Amino acid Schiff base complex cat-

alyst for effective oxidation of olefins with molecular oxygen.

J. Mol. Catal. A: Chem. 147, 173–178 (1999)

230 J Incl Phenom Macrocycl Chem (2007) 59:223–230

123


	Synthesis, characterization and catalytic oxidation of&blank;tetrahydrofuran with 16-membered pentaazabis(macrocyclic) copper(II) complexes; {[Cu([16]aneN5)]2R}4+ �(R = aromatic nitrogen-nitrogen linkers)
	Abstract
	Introduction
	Experimental
	Preparation of {[Cu([16]aneN5)]2R}(ClO4)4 (1-5)
	Preparation of {[Ni([16]aneN5)]2R}(ClO4)4 (R = Benzidine)
	Oxidation of tetrahydrofuran; general procedure

	Result and discussion
	Conclusions
	Acknowledgment
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


